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Abstract. We study the quantum scattering of geodesic curves on the hyperboloid via 
established techniques in geometric quantisation. The wave operators are shown to be the 
dual Radon transform, and the S matrix thus calculated is the same as the one from 
Coulomb scattering. The procedure we used here can be extended to treat any non-compact 
symmetric spaces since they involve only geometric and group theoretic arguments. 

1. Introduction 

There has been an effort to study quantum scattering theory using dynamical groups 
of symmetries (Alhassid et a1 1986). Specifically, the S matrix was essentially deter- 
mined from purely group theoretical considerations in the presence of such symmetries. 
For the group S0(1,3) ,  the symmetry group of the Coulomb scattering, the S matrix 
was calculated (Wu 1985) from the eigenfunctions of the Laplace-Beltrami operator 
on the hyperboloid, on which the group acts naturally. The result agrees with the ones 
from Coulomb scattering even though the physical aspects of the problem never enter 
the calculation. These seem to suggest that the dynamical group plays a fundamental 
role in the scattering process, a viewpoint being used extensively in the bounded states 
case. Here we present a formal geometric procedure, using the SO( 1,3) group as our 
example, of getting the scattering wave operators and the S matrix. Our procedure 
involves creating a classical mechanical system having such a symmetry group and 
quantising that system using the techniques of geometric quantisation (Kostant 1970). 
Although our calculations are for the group S0(1 ,3 ) ,  it is clear that these ideas can 
be generalised to any semisimple Lie group of non-compact type with finite centre. 

A natural model for a system with S 0 ( 1 , 3 )  symmetry is the free motions on the 
hyperboloid, i.e. we take T*H, the cotangent bundle over the hyperboloid, as our 
phase space with its standard symplectic structure, geodesic flow as the Hamiltonian 
vector field. We need to define the asymptotic data which are the subject of study in 
scattering theory. This is done in § 2. 

We assume that readers are familiar with Kostant’s geometric quantisation. (For 
a recent account see Sniatycki (1980).) We now discuss the quantum aspects of 
scattering. Newton (1980) has introduced a mixed representation space Lz( S 2  x R,) 
for quantum scattering. The unitary transformation relating the standard position 
representation and this mixed representation is given formally by 

~ ( x ) E  L 2 ( R 3 ) - f ( b ,  , + ) E  L 2 ( S 2 x R , )  
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i.e. a Radon transform (integrating over hyperplanes) followed by a derivative. The 
virtue of this representation is that the kinetic energy operator is simply d2/dA2. This 
can be seen, symplectically, from the fact that if we extend b, A to a canonical coordinate 
on T*R3, letting b = p / l p l ,  the direction of the momentum p ,  the dual variable for A 
is Ip / .  Thus quantising kinetic energy lpI2/2 becomes differentiating with respect to A .  
Physically A measures the distance from the hyperplane to the scattering centre. This 
transformation captures information concerning asymptotic directions. The potential 
energy operator poses problems in this representation. However, since we are dealing 
with free motions, we can borrow the geometric ideas of this mixed representation. 
We will indeed show in 0 3 that the Radon transform on the hyperboloid, which has 
been extensively studied (Helgason 1984), has the same physical significance as 
Newton’s mixed representation, and thus can be viewed as an outgoing wave operator, 
in the sense that we can retrieve all asymptotic information. The incoming wave 
operator is defined analogously, via a change in orientation. From these we can 
calculate the scattering matrix. In 0 4 we will remark briefly on the generalisation to 
other Lie groups. 

2. The classical model 

Let H = { ( y o , y , , y 2 , y 3 ) l [ y , y ] = y ~ - y : - y : - y : =  l,y,,>O} be the unit hyperboloid in 
which the SO( 1,3) group acts naturally. We will henceforth denote by [ , ] the Lorentz 
inner product (+ - - -). The cotangent bundle T * H  has a standard symplectic struc- 
ture. For convenience, we will think of T*H as a reduction (Weinstein 1977) of the 
subset { (y .  7) E R4 x R41[y, y]  = l}. Here R4 x R4 has the symplectic form dTO A 

dyo-Z d v i  A dyi so that the SO( 1,3) actions are canonical. We can identify T * H  = 

It is known that H as a Riemannian manifold is isometric to the non-Euclidean 
ball. Thus the unit sphere S 2  is a natural boundary for H and points on the boundary 
are the asymptotic directions. It can be shown that the geodesics passing through y 
with outgoing direction ( t  + a), k = ( w l ,  w 2 ,  w 3 )  E S 2  can be parametrised as 

{ ( Y A l [ Y , 7 7 1 = 0 ,  [Y,Yl=l}* 

where w = (1, k ) .  
In line with Newton’s ideas, we need notion of hyperplanes and their distance 

from the scattering centre. The geometric significance of the hyperplanes is that each 
intersect a parallel family of lines normally. On H,  these are known as horocycles 
(Helgason 1984) with defining equation [ y ,  w ]  = constant, w = (1, k ) ,  k is the direction 
of the parallel family. The distance between the horocycle and the scattering centre 
(1 ,0 ,0 ,0)  is -log[y, w ]  = A. (Note that by convention the distance is negative if the 
horocycle has yet to propagate through the centre.) Since k is a unit vector, 8 = e’w 
satisfies [ 8, 81 = 0. Let Z = { 8 E R41[ 8, 81 = 0, go> 0} on which SO( 1,3)  acts. Z para- 
metrises the set of all horocycles 8 -+ [ y ,  81 = 1. 

Let ( y ,  7) E T * H  with outgoing direction k and distance A from the centre. Define 
x+: T * H + Z  
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It can be shown that 8 is given explicitly as 

(2.3) 

(7  E T Z H  implies [ 9, 771 < 0). Note that x+ is SO( 1 ,3 )  action preserving. The pre-image 
of a point in C is a Lagrangian submanifold in T * H .  Thus x+ defines a polarisation 
of T * H  and we can quantise the space with respect to this polarisation. We denote 
the resulting Hilbert space as Q(x+). 

The calculation is completely analogous in the incoming direction. We will denote 
the resulting Hilbert space by Q ( x - )  and will comment on it in P 4. 

The standard position representation space is of course L2( H ) ,  square integrable 
functions with respect to the group invariant measure on H .  Via the Blattner-Kostant- 
Sternberg ( B K S )  pairing (Blattner 1973), we can identify both Q(x-)  and Q ( x + )  with 
L 2 ( H ) .  Thus we get the following diagram 

L2( H )  

where S will be the scattering matrix and the B K S  will be the incoming and outgoing 
wave operators. Our objective is to show that Q(x+) is canonically isomorphic to 
L’(C)  and the BKS+ is the dual of the Radon transform of H. 

3. Quantisation 

Let a = r l0 dyO-I;7, dy, be the connection form on T * H  considered as a subset of 
R4 x R4 for convenience. w = d a  is the symplectic form. Q(x+)  consist of functions 
on T * H  covariant constant along the leaves of the polarisation with respect to a: if 
the leaves are defined by f k  =constant, k = 1 ,2 ,3 ,  then cp E Q(x+)  if 

{X&+i(a ,  Xfi)}p=O V k .  (3.1) 
Here 

2, = (af laao)  a layo-C (af la771)  JlaYt - ( a f / a Y o )  a / a 7 7 o + t c  ( a f l a y , )  aIa77, (3.2) 
is the Hamiltonian vector field of the function f with respect to w. To ensure R, is 
indeed a vector field on T * H ,  we must choose f constant along the integral curves of 
2[ ,,,,, and X[,,?]. Then 

(3.3) ( a ,  %)= 77oa f la770+C 77! afIa77,. 
From (2.31, the defining functions are 

1 
Y !  + ,z 77, = constant. 

( - [77 ,  771) 
It can be shown that 

1 
on T * H  

(-[77, 771)”281  
= Yl + (3.4) 
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and these are constant along Xry,.il and X[,,,. Thus the polarisation is defined by the 
Hamiltonian vector fields of f k .  Furthermore, f k ( y ,  7) are homogeneous of degree 0 in 
the variables 77. So (a, X’) = 0 and the covariant constant condition becomes constant 
along the leaves, i.e. the pull back 

xT : L 2 ( Z )  --f a x + )  (3.5) 

is a canonical isomorphism. Here the symbol L2 is used loosely, since we are only 
interested in the geometrical contents of the integral formulae rather their convergence. 
The Hilbert space structures are dictated by the group actions. 

The position representation space arises from quantising T * H  with respect to the 
vertical polarisation whose leaves are the cotangent planes T s  H. Since the vector field 

(3.6) 

is tangent to the leaves of both polarisations, these polarisations do not intersect 
transversely. The BKS pairing technique has to be modified (Sniatycki 1980). Roughly 
the pairing involves integrating not on T*  H,  but on a subset which cuts each integral 
curve of U once. For convenience, we choose the subset [ 7, 771 = -1. Then 

U = 7 0  d/av ,+C vi a / a ~ t  

r r 

Here det is calculated as follows: let {v ,  U,, u2}  and {U, w , , w2} be vector fields for the 
two polarisations in question and v as in (3.6). Then det is the determinant of the 
2 x 2 matrix whose 0th entry is w (  v i ,  wj). Each entry is a constant for the following 
reason: w is S0(1,3)  invariant, since the group action is symplectic. The vector field 
can be chosen SO( 1,3) equivariantly since the leaves, restricted to the subset we are 
integrating over, are orbits of subgroups of SO( 1,3),  Tf H n [ 7, 771 = - 1 is the orbit 
of the isotropy subgroup of y ,  x i ’ (  8 )  n [ 77, 771 = -1 is the orbit of the isotropy subgroup 
of 8, so w ( v i ,  wj) is an S0(1,3)  invariant function. The subset [v, 771 = -1 is an S0(1,3)  
orbit now implies that it is a constant. Thus 

BKS induces an isomorphism L2(X)  + L2( H )  

(3.9) 

i.e. integrating over the set of horocycles containing y.  This is indeed the dual Radon 
transform (Helgason 1984). 

The eigensubspaces of the energy operator should be the irreducible subspaces of 
the SO( 1,3) representation. In the spirit of Alhassid et al, there is no need to define 
such an operator. Of course one can easily show that the Laplace operator on L2( H )  
(Casimir operator) is the quantisation of the energy (-[ 77, ~ 1 ) ’ ’ ~ .  

The relation between the Radon transform and dual Radon transform is 

UR*RV(Y)  = M y )  (3.10) 
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where R, R* and 0 denote the Radon, its dual and the Laplace-Beltrami operator 
respectively. c is a constant depending only on the Lie group and not even on the 
eigensubspace. Since we are only interested in projective representations in quantum 
mechanics, we can indeed interpret R as the inverse wave operator. 

The irreducible subspaces in L’(E) are homogeneous functions in go of degree 
-ip-1, p real (Gelfand et a1 1966). The function 

(3.11) cp( 8,, %,e) = s;’p-ls,(e) 
represents a case of interest, 

@ ( y )  = [y ,  k y ’ .  (3.12) 

These are the plane waves with outgoing direction k and energy p. One can show that 
the plane wave with incoming direction k’ and energy p is [y ,  k’ ] - - lp - ’ .  This is in fact 
the motivation behind the calculation of the S matrix in Wu (1985): 

S p ( k ,  k’) = [y ,  k ] ’ p - ’ [ y ,  k’Iip-l  dy. (3.13) 

This result is consistent with Coulomb scattering. 

group and their Iwasawa decompositions. 
The group theoretical significance of the S matrix is seen in the context of the Lie 

4. Generalisations 

Let G be a semisimple Lie group of non-compact type with finite centre, K a maximal 
compact subgroup. Fix a Cartan decomposition p 0  k of the Lie algebra, a a maximal 
Abelian subalgebra in p ,  a+ a Weyl chamber, set A = exp a, let M, M‘ denote the 
centraliser and normaliser of A in K, then K I M  can be viewed as the boundary 
(asymptotic directions) of the symmetric space X = G/K (Helgason 1984). Let G = 
KAN be the Iwasawa decomposition corresponding to our previous choices. It is 
important to point out that N, the nilpotent subgroup, depends on the choice of the 
Weyl chamber a+.  The set of horocycles in X is parametrised by Z = G / M N =  
IC/ M x A. G also acts on the boundary via K/ M = G/ MAN. 

Modelled on the SO( 1 ,3)  case, we consider geodesic motions on X and can define 
a G equivariant map 

x+: T * X + E  (4.1) 

where ,y+(x, 7) = 8 = b exp AMN, bM specifies the asymptotic outgoing direction, 
A E a specifies the ‘complex distance’ between the horocycle 8 and the scattering centre 
eKE G/K. Explicitly, if we identify the cotangent bundle via the Killing form, let 
x = hK where h = k exp a k - ’ ,  we can parallel translate h i ’ q  E T,X = p .  Thus h ; ’ ~  = 
K L Y K - ’  where K E K/ M, CY E ai are uniquely defined. Then 

b = hKMAN (4.2) 

x = b(exp A)nK. (4.3) 

and A is such that there is a n E N with 

Since A is a vector quantity, its dual variable, the ‘complex energy’, should be the 
same, i.e. we have a set of dim a conserved quantities in the dynamical system. We 
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have an interesting physical interpretation of the Iwasawa decomposition: consider 
the G action on X ,  K acts on the set of asymptotic directions, the orbits of conjugate 
subgroups of A are the families of parallel trajectories and those of N are the horocycles, 
integrating over which gives the wave operator. 

In the incoming direction, since there is a change in orientation, we should 
decompose p as K/ M x a- ( a -  = -a+ ) ,  or the expressions (4.1)-(4.3) are exactly the 
same except that the nilpotent subgroup N arises from choosing a- as the Weyl chamber 
in the group decomposition. For the S0(1 ,3)  group, a is one dimensional, so there 
are only two different Weyl chambers. Our work suggest that the S matrix relates the 
Iwasawa decompositions corresponding to the two choices, which we conveniently 
labelled as incoming and outgoing. It will be of interest to see whether the presence 
of more chambers introduces other internal symmetries in a higher-dimensional case. 
In particular, the role of the Weyl group, M ' /  M, which permutes them. The S0(3 ,2)  
group deserves special attention since it has to do with heavy-ion scattering. 
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